
F2. Initializations
    FaceIt-based programs always contain a few lines of code devoted to initialization followed
by a "main event loop".    The following program, for example, would automatically support 
access to Desk Accessories, interact properly with MultiFinder and System 7, and support 
several standard menu items (Pascal source):
 fRec.uName := 'Minimum.Rsrc';
 FaceIt(nil,DoInit,0,0,0,0);
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);
 until false;
where the DoInit and DoLoop commands are defined in the "Commands" topic, and the 
"Minimum.Rsrc" file contains the clut, MENU, and STR# resources used by FaceIt, and the 
LoadIt module needed to call other FaceWare modules.
    The simplicity of the above example program is one of the distinguishing characteristics of
programming with FaceIt.    Nearly all additional code that you add to a program will be 
program-specific, making a "code generator" unnecessary when programming with FaceIt.
    The remainder of this topic discusses the initializations that are automatically done by 
FaceIt on DoInit, and the next topic discusses the main program event loop seen in all FaceIt-
based programs.

Menu Initialization
    Nearly all Mac programs make use of the main menu bar at the top of the main screen.    
The pull-down menus in this bar are always available unless they have been disabled by the 
program or a modal window has been opened.    Menus in the main menu bar often contain 
hierarchical menu items attached to hierarchical menus, and windows often contain pop-up 
menus.    FaceIt and ViewIt provide complete support for the initialization and management 
of all three of these common menu types.
• Auto-Loaded Menus
    When DoInit is called, FaceIt looks for MENU resources in the program file or the program's
temporary resource file (w/ file name = uName) and automatically initializes and installs 
these if they have been properly numbered.    FaceIt searches for MENU resources with res 
IDs starting at 1001, 1002, ..., that have menu IDs of 101, 102, ... (menu ID = res ID - 900).    
MENUs continue to be loaded until 6 consecutive res IDs are encountered that do not have 
associated MENU resources (so you can leave gaps in your resource ID numbering for later 
additions).
    MENU resources can be created and edited using Apple's ResEdit resource editor (included
on the FaceWare Utilities disk if you purchased ViewIt).    The "menu ID" of each MENU 
resource can be set by opening the "Edit Menu & MDEF ID" dialog in ResEdit.    The following 
table reviews how menu ID numbers are used in FaceIt-based programs:
    101-190 - recommended for main program menus
    191-195 - reserved for temporary use by drivers
    196-199 - reserved for UtilIt's FSSC menus
    236-255 - reserved for use by ViewIt controls & DAs
where the range of menu IDs 101-190 would correspond to program MENU resources with 
res IDs 1001-1090.
    What To Do:    Most programmers begin programming with a copy of a demo resource file 
that already contains Apple, File, Edit, and Window menus (corresponding to resource IDs 
1001-1004 and menu IDs 101-104).    They then use ResEdit to modify these menus and/or 
to add new menus to support program-specific options.    When adding a new menu, don't 
forget to set the menu ID to res ID - 900 or FaceIt will not auto-load the menu.
• Hierarchical Menus
    Hierarchical menus can also be auto-loaded by FaceIt.    The only difference between these 
menus and menu bar menus is that (1) the first character of their menu titles should be a 
"+"    or "-" to inform FaceIt that the menu is not a menu bar menu (don't worry, this 
character is never displayed), and (2) there should be at least one menu item in another 



menu that is linked to this hierarchical menu.    ResEdit can be used to establish the link by 
checking the "has Submenu" option when editing the hierarchical menu item and then 
entering the menu ID (not the res ID!) of the linked menu.
    Hierarchical menus work best if they are numbered in the same, orderly manner as that 
described above for menu bar menus.    For example, if MENU 1005 (menu ID 105) has 3 
hierarchical menu items, then the associated hierarchical MENUs might be numbered 1006, 
1007, 1008 (menu IDs 106, 107, 108), with the next main menu bar MENU being numbered 
1009 (menu ID 109).
    ResEdit Bug:    The "Open Submenu" option in ResEdit only works if the submenu's 
resource ID is equal to its menu ID, which will not be the case for menus auto-loaded by 
FaceIt.
• Pop-Up Menus
    Pop-up menus are similar to hierarchical menus but are usually not linked to hierarchical 
menu items.    Rather, they must be "popped up" by calling "PopUpMenuSelect" (or the UtilIt 
command PopMen). In most cases, however, pop-up menus used by FaceIt-based programs 
are those supported by menu controls in ViewIt windows, and these are both initialized and 
managed by control drivers without the need for the main program to call PopUpMenuSelect.
    In cases where your program must initialize and manage the pop-up menu, FaceIt can be 
used to auto-load the menu by assigning it a res ID and menu ID in accordance with the 
scheme presented above, and by setting the first character in its title to "+" or "-" (as with 
hierarchical menus).    If such a program-managed pop-up contains standard items, then 
FaceIt's DoMenu command should be used to process items selected from the menu.

Window Initialization
    The presence of STR# 1000 in the program or program's temporary resource file causes 
FaceIt to attempt to open modeless windows defined by "auto-initialization" strings in this 
string list.    These auto-initialization strings have the format "[baseID],[versID],[resID],..." 
where "baseID" refers to the resource ID number of the window-driving FaceWare module, 
"versID" is the module's version ID, and "resID" is the resource ID of a resource or set of 
resources that define the appearance and content of the window.
    The auto-initialization string to open the modeless ViewIt window corresponding to FWND 
1000, for example, would simply be "1200,20,1000", which is equivalent to calling NewWnd 
(a ViewIt version 2.0 command) to open a new modeless window using FWND 1000.
    What To Do:    If you have started with a program resource file containing auto-initialization 
strings that are opening windows that you do not want, use ResEdit to delete these strings 
from STR# 1000.    (Click on the row of asterisks above the string in the STR# resource and 
choose "Clear" from ResEdit's "Edit" menu.)    If you would like to have other modeless 
windows auto-initialized by FaceIt, add new strings to STR# 1000.

Palette Initialization
    The scheme used by Apple to designate colors on a Mac that supports Color QuickDraw 
allows you to choose from any one of 16 million colors.    Unfortunately, you are not always 
able to display this many colors, and which of these can be displayed is determined by the 
"depth" of your screen and the current color "palette".    The screen depths supported by 
Color QuickDraw are 1, 2, 4, 8, 16, and 32 bits per pixel, corresponding to 2, 4, 16, 256, 
32768, and 16 million displayable colors, respectively.
    When DoInit is called, and Color QuickDraw is supported, FaceIt looks for "clut" resource 
1000 and uses this color table to reset the program-wide color palette.    This color palette 
determines which colors will be displayed by the program from the 16 million possible red, 
green, and blue combinations.    If the screen depth supports fewer colors than are in the 
palette, then only the first colors from the palette will be available.
    The default clut 1000, for example, contains 16 colors:    white, black, light gray, dark gray,
plus 12 other common colors (in that order).    This produces a reasonable set of colors at all 
screen depths:



    1 bit/pixel --> white & black displayed
    2 bits/pixel --> white, black, light gray, dark gray
    4 bits/pixel --> all 16 colors from clut 1000
 > 4 bits/pixel --> all 16 colors plus others
You may, on the other hand, have a need to work with 256 shades of gray.    In this case a 
clut resource consisting of 256 shades of gray (including white and black) could be used in 
place of the default clut 1000, and this would force the display of 256 shades of gray on 8-
bit deep monitors.
    "clut" resources can be created and edited with ResEdit.    A UtilIt command, SetPal2, is 
also available for switching the current program-wide palette from within programs.    
Experienced programmers can also obtain a handle to the current program-wide palette by 
calling "GetPalette" with an argument of -1 (i.e., "GetPalette(WindowPtr(-1))").    This handle 
can then be used with other Color QuickDraw calls to directly manipulate the contents of the
palette.
    What To Do:    The only programmers who need worry about clut 1000 are those whose 
programs need to define a large fraction of the displayable colors (such as 256 shades of 
gray on an 8-bit deep monitor).
    TECHNICAL NOTE:    Although each window in a program can have its own color palette, we
recommend using the single program-wide palette for the following reasons:    (1) it 
minimizes the amount of window updating that occurs when different windows in the same 
program are brought to the front, (2) it solves the problem of floating windows which would 
otherwise have to be assigned the palette of the active window, and (3) it greatly simplifies 
the manipulation and switching of color palettes (you only have one to deal with).


